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Abstract 

A well-defined and efficient algorithm, which enables 
the derivation of any crystallographic space group 
and full characterization of its symmetry operations 
and elements, is described and illustrated. The 
algorithm is based on a representation of crystallo- 
graphic point groups in terms of cyclic groups, and 
on isomorphism relations between the point groups 
and the corresponding factor-group representations 
of the space groups. The characterization of the sym- 
metry operations and the corresponding symmetry 
elements is also presented in an algorithmic manner, 
with particular emphasis on the orientation of the 
axes of rotation and their location vectors. The above 
algorithms have been implemented in a computer 
program, an application of which to the space group 
Pag is shown and some relevant programming con- 
siderations are given. The input to this general pro- 
gram can be fully adapted to the space-group tables 
in Vol. A of International Tables for Crystallography 
[(1983). Dordrecht: Reidel]. 

Introduction 
The merits of an automated derivation of space-group 
information become apparent when such information 
is routinely required on space groups of higher sym- 
metry, or when crystal symmetry has to be regarded 
as a 'parameter' in theoretical considerations. Clearly, 
computer-generated symmetry information reduces 
the possibility of human error and may lead to most 
significantly increased efficiency of the calculations. 

Algebraic formalisms, related to a systematic deri- 
vation of space groups, have long since been estab- 
lished (Seitz, 1934, 1935a, b; Zachariasen, 1967) and 
computational approaches to the various aspects 
of this topic were put forward (e.g. Wells, 1965; 
Wondratschek & Neubiiser, 1967; Burzlaff & 
Zimmermann, 1980). Three relevant computer pro- 
grams have recently been reported (Fokkema, 1975; 
Hall, 1981; Burzlaff & Hountas, 1982) and the first 
of these was used in the generation and production 
of the space-group tables in International Tables for 
Crystallography (1983), which will hereafter be re- 
ferred to as ITA83. 

The present author's interest in this subject arose 
in connection with studies of generalized intensity 
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statistics, which required all-space-group calculations 
of absolute moments of the trigonometric structure 
factor (Shmueli & Wilson, 1981; Shmueli, 1982; 
Shmueli & Kaldor, 198 l, 1983), by methods of sym- 
bolic programming. Obviously, computer-generated 
symmetry information and its automatic transfer to 
subsequent computations are of great value in such 
calculations, as well as in many other applications 
involving space-group symmetry. 

After some preliminary experiments it was decided 
to base the algorithm on the method due to 
Zachariasen (1967), in which the following advan- 
tages seem to be apparent: (i) the generators are 
explicitly contained in the space-group symbol, which 
is therefore very easily decoded; (ii) Zachariasen's 
approach is simply related to basic group theory, it 
has a concise structure and provides relations that 
are to be satisfied by the generators; (iii) the sequence 
of the algebraic operations to be performed is exactly 
prescribed by the space-group symbol, thus avoiding 
any search for new operations; and (iv) the space- 
group symbols, proposed by Zachariasen (1967), can 
be easily adapted to programming and their revision 
in accordance with alternative conventions is straight- 
forward. 

This apparently not too well known method cer- 
tainly deserves to be reviewed, and some of its features 
will be discussed in the next section, as part of the 
description of the present space-group algorithm; the 
(nowadays) rarely used dyadic formalism, in which 
Zachariasen's (1967) equations are expressed, is here 
replaced by the more familiar matrix and vector nota- 
tion. The following section is devoted to a brief 
description of the geometrical characteristics of 
space-group symmetry operations and the corre- 
sponding symmetry elements, and the paper is con- 
cluded with examples of application of the above 
algorithms and some notes on the computer program 
in which they are implemented. 

Algorithm for the generation of a space group 

The basis of the present algorithm is Zachariasen's 
(1967) representation of the 32 crystallographic point 
groups in terms of cyclic groups and their products. 
The above representation can be briefly summarized 
by noting that (i) there are ten cyclic point groups 

O 1984 International Union of Crystallography 



560 SPACE-GROUP ALGORITHMS. I. 

(I, 2, 3, 4, 6, [, m, 3, 4 and 6), (ii) fourteen point 
groups can be represented as products (see below) 
of cyclic point groups of the orders: 2, 3, 4 and 6, 
and point groups of order 2, and (iii) the remaining 
eight point groups involve products of three cyclic 
groups each or, more precisely, products of two 
groups of types (i) and (ii) above (cf Table 2.5, 
Zachariasen, 1967). 

Denoting a cyclic group by 

{H}={H, H2,...,H'=I}, (1) 

where m is the order of the group, I is its identity 
element and H is its generator (e.g. Ledermann, 
1957), the above representation amounts to classify- 
ing the crystallographic point groups into the follow- 
ing three forms: 

(i) {Q}, (ii) {Q}x{R} and (i i i) {P}x[{Q}x{R}] ,  

(2) 

where P, Q and R are operators of proper or improper 
rotations that generate the corresponding cyclic point 
groups, and × denotes the operation of group multi- 
plication, as defined below; either {Q} or {R} is a 
group of order 2. 

The group products in (2), and in the rest of this 
paper, should be understood as follows. 

(i) If {A} and {B} are groups, not necessarily cyc- 
lic, then their product, {C}={A} ×{B}, is obtained 
as a set of ordered products of each element of {A} 
by each element of {B}. 

(ii) If the set {C} is a product of the groups {A} 
and {B}, then {C} is a group if  and only if {A} and 
{B} commute, i.e. if 

{C} = {A} x{B} = {B} x{A}  

Table 1. Product representation of crystallographic 
point groups 

The table lists the representations of the crystallographic point 
groups as products of cyclic groups (Zachariasen, 1967). Each 
cyclic group is generated by the operation, the-symbol of  which 
appears within the curly parentheses. The symbols are defined in 
Table 2. In order to obtain the matrix corresponding to a symbol 
with an overbar, e.g. 3", change the signs of all the matrix elements 
for this symbol, as given in Table 2. The product representations 
pertain to all the orientations of the axes which are needed for the 
generation of  the 230 space groups. The second setting is used for 
the monoclinic system; to obtain the first setting, replace 2 b with 2L 

Short Product Short Product 
symbol representation symbol representation 

I {I} [ t3"} X {,2Y} (L)'(5) 

T {T} t {3"} x {2.g} (')x6) 2 {2 b} 3m 
m {~h} {3q} X {~e}(2) 
2/m {f} x{2 h} 
222 {2c} x{2 a } { {~'} x {2f}(IL(7) 
mm2 {2c} x {?. a } .3m { ]"}  x {2~:} (')'{8) 
mmm { I}  x[{2c} x{2a}] {gq} X {2e}(2) 
4 {4'} 

{~c} 6 {6 ~} 
4/m {/} x {4"} ~ {~c} 
422 {4"} x {2"} 6/m (/} x {6"} 
4ram {4"} x{2. a } 622 {6"} x{2/}  
~2m {~"} x{2"} 6ram {6 c} x{2 y} 
4m2 {~,"} x{2 d } 62m {6"} x{2 y} 
4/mmm {I} x[{4c} x{2a}] 6m2 {6"} x{2*} 

({3c}~t) 6/mmm {1} x [{6' } x {21}] 
3 ,)[13q}(2) 23 {3 q } x[{2 c } x {2a }] 

m.3 {.3*} x [{2"} x{2a}] 
,J'{~"}(') 432 13q} x[{4c} x l2d} ]  

J [{~,~}t2~ 2,3m {3 a } x[{~, c} x {~d}] 
m3m {.3q} X[{4 c} x{2d}]  

{3'} x{2r} ~'~3~ 

32 1{3"} x{2g} (I)'t4) 

Notes: (I) hexagonal axes; (2) rhombohedral axes; (3) as in P321; (4) as 
(3) inP312;(5) asinP3ml;(6)asinP31m',(7)asinP~ml;(8)asinP~lra.  

(Zachariasen, 1967, p. 248; Ledermann, 1957, p. 56). 
(iii) It is not assumed that the individual elements 

of{A} and {B} also commute, i.e. that AiBj = BjAi for 
any i and j ;  if this happens to be true, then {A} x{B} 
is a direct product of the two groups (e.g. Ledermann, 
1957, p. 45). 

The last restriction is missing from Zachariasen's 
definition of the direct product (Zachariasen, 1967, 
p. 248), and his reference to 'direct products', 
throughout the above representation, is therefore 
sometimes incorrect. In fact, only some of the point 
groups can be represented as direct products (in the 
generally accepted sense), but there is also little or 
no advantage in utilizing the nature of the group 
products in the present application. The points (i) 
and (ii) above are sufficient for the present purpose, 
and a group-theoretical classification of the products 
that occur in the generation of the point groups is 
outside the scope and beyond the requirements of 
this paper. 

Table l lists all the point groups, some of them in 
alternative representations, in terms of their cyclic- 
group building blocks, and Table 2 presents the twelve 
matrices of proper rotation which, taken together with 
inversion, suffice for the generation of the three- 
dimensional point groups (Zachariasen, 1967, p. 61) 
given in Table 1. 

This representation of the point groups, which will 
be used as it stands in the generation of space groups, 
is particularly suitable for computation since the gen- 
erating elements are explicit in the group symbols 
and the structure of the latter prescribes all the 
operations (here: matrix multiplication) to be per- 
formed; no iterative search for new elements, as 
implemented in other algorithms (Fokkema, 1975, 
1983; Hall, 1981), is here required. 

For example, the operations of the point group 32, 
in a representation suitable for the derivation of the 
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Table 2. Point-group generators (proper rotations) 

The  t ab le  def ines  the twelve  ro t a t i on  opera to r s ,  wh ic h  are n e e d e d  
in o r d e r  to cons t ruc t  the p r o d u c t  r e p r e s e n t a t i o n s  of  the  p o i n t  
g roups ,  as g iven  in T a b l e  1. 

(ion) t 00) 1 =  I 2 " =  i 0 

0 0 i 

2"= i 2 a =  0 0 

0 0 i 

2 f =  i 2 g=  i 0 

• o 0 i 

3"= 1 i 4"= 0 

0 0 0 

Correspondence between 

t! 00) 2 b= I 0 

0 i 

2 e-- 0 

0 

6"= 0 0 

0 I 

the present and Zachariasen's symbols; I.h.s. 
present, r.h.s. Zachariasen (1967, Table 2.8): 

I = l ( a ) ;  2 ~ =2'(o, t, c); 2 h =2 (m) ;  
2 c = 2(0, t, c); 2 d = 2"(0, t, c); 2 e = 2'(hR); 
2 f = 2'(h); 2 g = 2"(h) ; 3 q = 3'(hR) and 3'(c) ; 
3" = 3(h);  4" =4(t,  c); 6" = 6(h); 

where the letters a, m, o, t, h and c denote the triclinic, monoclinic, 
orthorhombic, tetragonal, hexagonal and cubic crystal families (Hahn & 
Vos, 1983), respectively, and the symbol hR indicates that the corresponding 
operation occurs in rhombohedral space groups. 

space group P321, are obtained from Table 1 as 

{3 c} x{2 / }={1, 3 c, (3c) 2} x{1,2 / } 

= {1,3 C, (3") 2, 2 s, 3c2 s, (3c)22S}, (4) 

followed by substitution of the appropriate matrices 
from Table 2 and evaluation of the matrix products. 
Note that (4) is not a direct product since, for 
example, 3~2 / does not equal 2f3L However, the same 
set of six matrices, in a different order, would be 
obtained upon evaluating the product {2 s} × {3"} [cf. 
(3) above]. 

The coordinates of the general equivalent positions, 
for the space group P321, can now be obtained by 
premultiplying the vector (xyz), taken as a column 
vector, with the matrices in (4). Of course, all the 
symmorphic space groups can be derived in this 
manner, making use of Tables 1 and 2 and taking 
into account the appropriate Bravais lattices. 

The above considerations are readily extended to 
the generation of non-symmorphic space groups. 
However, some relevant definitions and notation 
should first be recalled. 

A space-group symmetry transformation is given by 

r '=  P r + t  +rL, (5) 

where P is an operator of proper or improper rotation 
belonging to a point group, r£ is a lattice translation, 
t is a zero vector or a permissible translation not 
belonging to the lattice and the vectors r and r' denote 

the positions of two points with identical environ- 
ments, i.e. equivalent positions. The space-group 
operator, involved in (5), is brought out by rewriting 
(5) in the Seitz (1935b) notation 

r '=  ( P l t + r D r  (6) 

and the product of two space-group operators (Pit) 
and (Qlu)is  

( Pit)(Qlu) = (PQlPu +t), (7) 

where the lattice vectors were taken as zero, as can 
be verified by making use of (5) and (6). The operator 
inverse to a space-group operator (Pit) is given by 

(Pit) - I --  ( P - ' I -  P-It)  (8) 

and the product of (P[t) and (P{t) -I is seen to equal 
(I]0), the identity element of the space group. The 
general form of a space-group operator, appearing 
in (6), can be rewritten as ( l l rD(Plt) ,  where ( l l rD 
is an element of the translation subgroup of the space 
group. For further detailed explanations the reader 
is referred to the original paper by Seitz (1935b) or, 
more accessibly, to the explanatory sections of ITA83 
(e.g. Wondratschek, 1983). 

The following well-established results lead to the 
extension of the generation of the point groups to 
that of the space groups. 

(i) The translation subgroup F={(l[r£)} is an 
invariant subgroup of the space group (Zachariasen, 
1967; Ledermann, 1957). 

(ii) Any space group, say G, can be represented 
by a factor group (cf. Ledermann, 1957, p. 102) which 
may consist of the following decomposition into 
cosets w.r.t, the invariant subgroup 

{(IlO)r,(P21tOr, . . . , (GIt~)r}=G/r (9) 

(Bertaut & Wondratschek, 197 l, 1972; Wondratschek, 
1983), where (II0) is the identity operation of the 
space group, t~ are zero vectors or space-group trans- 
lations not belonging to F, Pi are point-group 
operators of proper or improper rotations and g is 
the order of the point group; g is also the order of 
the factor group, and the identity element of the latter 
is the invariant subgroup F. 

(iii) The factor group G/F and the point group 
on which G/F is based are isomorphic (Ledermann, 
1957; Wondratschek, 1983). Hence, there is a one-to- 
one correspondence between their generating ele- 
ments. 

It follows that a crystallographic factor group 
(omitting F )  may have one of the following forms: 

(i) {(Qlu)}, (ii) {(Qlu)}x{(Rlv)} 

and (10) 

(iii) {(Pit)} x [ { ( Q l u ) }  x { ( R l v ) } ] ,  

in correspondence with the point-group forms given 
by (2), where Q, R and P are point-group operators 



562 SPACE-GROUP ALGORITHMS. I. 

and u, v and t are zero vectors or permissible space- 
group translations not belonging to /-'; the curled 
parentheses denote the set of all the different powers 
of the enclosed space-group operator (and generator). 
The corresponding forms of the full space groups 
follow by multiplying each of those in (10) with the 
appropriate translation subgroup F. 

In order to generate a space group, we require the 
translation parts of the space-group generators, the 
rotation parts being given by Tables 1 and 2. This 
information is contained in the space-group data 
already available in all the main editions of Interna- 
tional Tables for X-ray Crystallography ( 1935, 1952; 
ITA83), and is most easily accessible in the recent 
one, as will be shown in the last section. 

For example, consider the point group 432 and the 
related space group P4t32. From Table l and (10), 
the factor group is given by 

{(3q[t)} × [{(4C[u)} × {(2dlv)}], (11) 

where, in analogy with (1), 

{(3qlt)} = {(3qlt), (3qlt) 2, (3qlt) 3 _-_ (I10)} , 

{(4C[u)} = {(4~lu), (4~lu) 2, (4Clu) 3, (4Clu) 4~ (I10)} 

and 

{(2dlv)I={(2dlv),(2dlv)2=(IlO)}; (12) 

the sign ~ indicates that the translational part of the 
product has been reduced to the reference unit cell, 
i.e. non-zero lattice vectors were subtracted. The com- 
ponents of the translations t, u and v, corresponding 
to the origin choice in International Tables for X-ray 
Crystallography (1952) and ITA83 for this group, are 
(0, 0, 0), (¼, 3,/) and (3, l, 1), respectively. Making use 
of Table 2 and (7), the symbolic form of the factor 
group can now be readily expanded by computing 
all the products of the form (3qlt)i(4¢luy(2d Iv) k, where 
i, j and k are the exponents appearing in the 
expansion of the cyclic groups in (12). 

A list of explicit space-group symbols, equivalent 
to the representations given in Tables 1 and 2, and 
in (10), is given by Zachariasen (1967), in correspon- 
dence with the 1935 edition of International Tables 
for X-ray Crystallography. These symbols, initially 
used in the present work, were modified to conform 
with the most recent source of space-group data 
(ITA83). A concise table, showing how to construct 
such symbols with the aid of ITA83, is given in the 
last section. 

Zachariasen proposes three types of relations, 
which are necessary conditions for the validity of a 
set of space-group generators and represent restric- 
tions on their translation parts (Zachariasen, 1967). 

(i) Any generator (and, indeed, any space-group 
operator) must obey the relation 

(Qlu) m = (llrL) , (13) 

where m is the order of Q, rL is a lattice vector and 
I is the unit matrix. Equation (13) is of fundamental 
importance in the actual generation and description 
of space-group operations. 

(ii) If the factor group is of the form 

G / r  = {(Qlu)} x {(RIv)} , (14) 

where one of the generators is of order 2, we must have 

(QIu+rL)=(RIv)(QIu)(RIv), (15) 

where rL is a lattice vector. The generators (Qlu) and 
(R[v) above must correspond to the first and second 
point-group generators in the relevant entries of Table 
l, respectively. Relation (15) is also used by 
Zachariasen (1967) in examples of derivations of the 
possible space groups that are based on a given point 
group. 

(iii) If the factor group is of the form 

G/r={(Plt)}x[{(Qlu)}x{(Rlv)}], (16) 

the generators (Q[u) and (Rlv) must obey relation 
(15), and the following equation has to be satisfied 

(Qlu+rL)=(Plt)-'(Qluy(Rlv)k(plt) t, (17) 

where j, k and I are integers, uniquely associated with 
a point group [cf. equation [2.115b], Zachariasen, 
1967]. As in (15) above, the order of the generators 
must follow Table 1. 

The integer triplets jkl in (17) were found to assume 
the following values: 121 (for mmm, 4/mmm and 
6/mmm), 211 (for 23 and m3), 322 (for 432 and 43m) 
and 325 (for m3m). 

Equations ( 13)-(17) have been used in testing com- 
puter-adapted symbols for all the space groups. An 
expanded form of (13) is most useful in the decompo- 
sition of the translation part of a space-group 
operation into its intrinsic (screw axis or glide plane) 
and location-dependent components (Wondratschek 
& Neubfiser, 1967; Fischer & Koch, 1983). 

The coordinates of the general equivalent positions, 
computed by the present method, reproduce those 
given in ITA83 for space groups with P-type Bravais 
lattices, and sometimes differ from those given in the 
above reference by centering translations of non-P 
lattices. It appears difficult to achieve a complete 
consistency, regarding this formal matter, however. 
It was found advisable to omit the reduction of the 
translation parts of the space group operations 
modulo lattice vectors with fractional components, 
at least until some definite rules for such reduction 
are established. 

The present algorithm is readily adapted to non- 
standard settings. If, for example, the position vector 
of a point is transformed from the old (crystal) axes 
and origin to new ones by 

r(new) = Tr(old) + p, (18) 

the corresponding relation between the space-group 
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generators is 

(PIt).ew=(TIp)(PIt)o~d(Tlp) -~, (19) 

where T is a transformation matrix and p is the 
origin-shift vector (see e.g. Arnold, 1983). Similar 
transformations can be easily devised if it is desired 
to utilize crystallographic space-group operations in 
computations referred to a Cartesian system. In any 
case only the generators have to be transformed, 
whereafter their expansion into the required set of 
space-group operators follows as outlined in the 
above example. 

It may also be of interest to compare the space- 
group generators chosen in this study with those used 
for International Tables for Crystallography (1983). 
As pointed out above, the present choice is dictated 
by the cyclic-group representation (Table 1) which 
ensures the ease of the construction of a well-defined 
and efficient algorithm. In ITA83, the choice of the 
generators and generating procedures was such as to 
ensure a ' transparent '  ordering of the coordinates of 
the equivalent positions and an easy recognition of 
important subgroups (Wondratschek, 1983). It 
appears that the purpose has been achieved in both 
cases. 

Since in the present algorithm all the space groups 
which are based on a given point group are generated 
in the same way [cf. Table 1, (10) and last section], 
and the same procedure was followed in the gener- 
ation of the space-group tables in ITA83, there is a 
one-to-one correspondence between the ordering of 
the positions in both cases. The preferable ordering, 
as given in ITA83, is thus achieved with the aid of a 
simple sorting procedure, as would be the case for 
any ordering scheme involving a point-group-like 
arrangement. 

The space-group tables in ITA83 require up to five 
generators for a space group, while in the present 
case only up to three generators are needed (both 
numbers do not include lattice translations). A smaller 
set of generators becomes advantageous when the 
space-group symbol, whether computer-adapted or 
not, is to contain all of them explicitly. This is the 
case in the present study, since the computer-adapted 
space-group symbol (see last section) serves here as 
the only input item required for the generation of a 
space group. 

Orientation and location of symmetry elements 

The matrix-vector representation of a space-group 
operator, secured as described above, contains all the 
information that is required for a complete 
geometrical characterization of the space-group 
operation and the corresponding symmetry element. 
Procedures for doing this are well documented in the 
literature and two detailed articles devoted to this 
subject have been published (Wondratschek & 

NeubiJser, 1967; Fischer & Koch, 1983). Algorithms 
for the determination of (i) the type of the rotation 
(proper or improper), (ii) the angle of the rotation, 
(iii) the order of the rotation part (as an element of 
the point group), and (iv) the decomposition of the 
translation part of the space-group operation into its 
intrinsic and location-dependent components, are 
given in the above references, and detailed examples 
are contained in the second one (Fischer & Koch, 
1983). We shall comment below on an alternative 
method for the determination of the orientation of 
axes of rotation, and will deal with the location vec- 
tors of the symmetry elements in somewhat greater 
detail. 

Orientation of the axis of rotation 

A lattice vector parallel to an axis of rotation can be 
obtained by solving the eigenvalue equations: Pr  = r 
or P r = - r ,  according as P corresponds to a 
proper or an improper rotation, respectively (e.g. 
Wondratschek & NeubiJser, 1967), and suitably nor- 
malizing the components of the appropriate eigenvec- 
tor r. The following approach is often a useful 
alternative to the above. 

Given a space-group operation, say (Pit),  consider 
the matrices 

[P ] ,  = I + P + P 2 + . . . + P m - '  (20) 

and 

[p ]2=  1 -  p + P: +.. .  + ( -  1) m-' Pro-', (21) 

where m = 2, 3, 4 or 6 is the order  o f  P (i.e. pm = 1), 
and let rs be a lattice vector which is neither perpen- 
dicular nor parallel to the axis of rotation. Decompos- 
ing rs into its components along and normal to the 
axis, it is easily shown that a lattice vector parallel 
to the axis of rotation can be directly obtained as 

~[P]lrs,  if P is a proper rotation 

rp = [[P]2rs, if P is an improper rotation. (22) 

The vector rs = (1, 3, 5) can serve the above purpose 
for all the symmetry operations in the standard 
(ITA83) space-group settings. 

The components of the vectors rp, rs and Prs  can 
now be used, as described by Fischer & Koch (1983), 
in the determination of the sense of the rotation 
(where appropriate), and the matrix [P]t is needed 
anyway for the decomposition of the translation part 
of the space-group operation into its intrinsic and 
location-dependent components (e.g. Wondratschek 
& Neubiiser, 1967; Fischer & Koch, 1983). The matrix 
[P]I is equivalent to Zachariasen's (1967) 'charac- 
teristic dyadic',  frequently used in his study. 

Location of symmetry elements 

In order to specify the location of a symmetry element 
(axis or plane), we require its orientation and the 
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coordinates of any point located on the element under 
consideration. A general location vector is given by 
the sum of a vector with variable components [based 
on rp in (22)] and the position vector, say x, of the 
above fixed point. As pointed out in nearly all the 
references that deal with the geometry of space-group 
symmetry elements, the vector x must satisfy the 
equation 

Px +trot = x or (I - P)x = t~oc, (23) 

where I is the unit matrix and t~oc is the location- 
dependent component of the space-group operation 
(Pit). Of course, the intrinsic part of the translation 
t is not relevant, and if tjoc= 0 the element passes 
through (or is located on) the origin. However, a 
systematic computation of such location vectors still 
deserves some comments. 

If P corresponds to an axis of inversion other than 
~. = m, the solution is obvious since, in this case, there 
must be one and only one point (a special position) 
satisfying (23), and the matrix ( I - P )  is then not 
singular. 

For P representing a twofold axis of proper rotation 
or a plane of reflection, the translation component 
t~oc is perpendicular to the element and, in either case, 
the solution of (23) can be written as x = t~oc/2 +Xp, 
where xv is the indeterminate part of x and can be 
set equal to a zero vector. In general, for P = 2, Xp is 
parallel to the twofold axis and for P = m, xp is parallel 
to the reflection plane. 

The remaining elements are threefold, fourfold and 
sixfold axes of proper rotation, the component of x 
parallel to an axis being indeterminate. In standard 
representations of the space groups (e.g. ITA83), any 
of these axes is either parallel to one of the basis 
vectors or to one of the body diagonals of the unit 
cell. If, for example, an axis is parallel to a, the first 
(x) component of the vector x is indeterminate and 
the remaining two components are solved for by 
deleting the first row and first column of the matrix 
( I -  P) in (23). Axes parallel to b and c are treated 
analogously. 

The case of an axis being parallel to a body diagonal 
is less obvious, since the singularity of the matrix 
(I - P) cannot be dealt with as simply as for the [100], 
[010] and [001] orientations above. The same problem 
may arise for any axis of proper rotation (n > 2), 
which is oriented in a general direction. The solution 
is (i) to transform (23) to a system such that one of 
its basis vectors coincides with the vector parallel to 
the axis of rotation, (ii) solve (23) for the determinable 
components of x, while equating the indeterminate 
one to zero, and (iii) transform the solution vector 
back to the original system. In standard space-group 
settings, the above concerns only the threefold axes 
in the cubic system, for which t~oc is not a zero vector. 

The general forms of the location vectors of the 
various symmetry elements can now be obtained from 

their 'axis eigenvectors' rp [cf. (22)] and the coordin- 
ates of the points through which the elements are 
passing. If, for example, a threefold axis in a cubic 
space group is parallel to [111] and is found to pass 
through the point (~, -~, ½), a general location vector 
for this axis can be written as (x +l,  $__~, :~ +l). Of 
course, any vector with components (8, - 8, - 8) can 
now be added to the general location vector, without 
changing its geometrical significance. Other rotation 
and inversion axes are treated in the same manner. 

For mirror or glide-plane operations, the plane 
normal is rotated through 90 ° about a line contained 
in the plane, the components of the rotated lattice 
vector are replaced by the appropriate variables and 
the fixed vector x is added. For example, consider a 
mirror plane in a hexagonal space group, with plane 
normal [100] and passing through the origin. After 
rotating the normal through 90 ° about the z axis, its 
direction coincides with that of [120] (an in-plane 
lattice vector) and the location vector for this sym- 
metry element can be written as (x, 2x, z). This is, of 
course, a special position. 

R e s u l t s  and p r o g r a m m i n g  cons idera t ions  

The algorithms described in the above two sections 
were implemented in a computer program, which was 
written in Fortran and has been run on the CDC 6600 
and Cyber computers at the Tel-Aviv University Com- 
putation Center. The results obtained are illustrated 
by the development and characterization of the cubic 
space group Pa3 (No. 205) in Table 3. 

The symmetry operations are sorted according to 
the ordering scheme of ITA83 (different ordering 
schemes are used in other versions of the program). 
The column with the heading T(PROP) lists the 
screw-axis and glide-plane translations, where pres- 
ent, and the vectors T(DISP) contain the location- 
dependent components of the space-group operations 
(cf. t~oc above). The last column presents the location 
vectors in their general forms, derived as described 
at the end of the previous section. These vectors differ 
from those given in ITA83 by vectors proportional 
to the axis eigenvectors (see above). It is immediately 
seen which vectors correspond to special positions, 
and the orientations of the axes and planes can be 
read off the variable parts of the location vectors. It 
may be noted that the complete location vectors for 
3BAR ( -- 3) operations furnish a geometrical descrip- 
tion of the corresponding axes, while only the fixed 
parts of these vectors are coordinates of special posi- 
tions. 

The input, from which the space-group information 
shown in Table 3 has been generated, consists of the 
following symbol: 

PCC$I3Q0005P2C6065P2A660. (24) 

In this computation a point-group code was also used 
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Table 3. Derivation and characterization of the space group Pa3 

The output  listing of  program SPGRGEN,  given in the table shows the elements (order  o f  axis, sense of  rotat ion and type),  coordinates  
of  the general  equivalent  posit ions,  screw-axis and glide-plane translations [T(PROP)] ,  loca t ion-dependent  componen ts  of  the translat ions 
[T(DISP)] ,  and possible forms of  general locat ion vectors o f  the symmetry elements for this space group.  Explanat ions  are given in 
the text. 

SPACE GROUP - P A 3 B A R  N O . Z 0 5  

( I 3 Q ;  O,  O, OI  ( P 2 C ; L / Z •  0 , 1 l Z )  ( P Z A ; 1 / 2 , 1 / 2 •  OI 

CUBT~ L A T [ [ C E  t Y P E  - P C E N T R O S Y H H E T R I G  

~ O P E R A T I O N S  G E M E R A T E O .  CLOSURE AqO [ M V E R S E  T E S T S  O e K .  

t I T S  G E M E R A T O R S  A R E I  

1 
2 

3 

6 
7 
8 
9 

10 
11 
12  
13  

15 
10  
17 
18 
19 
ZO 
21  
2Z 
2 3  
2~  

E L r H E H !  E Q U I V A L E N T  P O $ I [  ZOIIS 

1 * X * Y t Z 
2 1 1 2  - X - Y 1 1 2  t Z 

Z - X 1 1 2  * Y 1 1 2  * 7' 
2 1 / 2  t X 1 / 2  - Y - Z 
3 1 * )  * Z • X • Y 
3 ( . 1  1 / 2  + Z 1 / Z  - ~ - Y 
3 1 , )  l i e  - Z - K 1 / 2  * f 
3 ( • )  - Z 112  • X 1 / ~  - Y 
3 ( * )  • Y • Z • J( 
. 5 ( - )  - Y 1 1 2  • Z 1 / ~  - X 
3 ( - )  1 / 2  • Y 1 / ~  - Z - 
3 ( - )  l l Z  - Y - Z 1 / ~  • X 
I ~ A ~  - X - Y - Z 
2BAR' I/Z • X • Y L/Z - Z 
2BiIR * X l / Z  - f 1 / ~  • [ 
2Be,~ 1 / Z  - X 1 ¢ Z  • Y • Z 
3 I + ) ~ A R  - Z - 1( - Y 
3 ( • ) ~ A R  1 1 2 -  Z 112 • ~( • Y 
3 ( ~ ) B A R  t / Z  • Z * ~( 1 / Z  - Y 
3 I t I B A ~  • Z 1 1 Z  - l( 1 / ~  • Y 
3 I - ) B ~ R  - Y - Z - X 
3 I - ) B A R  + Y 1 / Z  - Z I. I Z  I. X 
3 ( - ) B A R  1 / 2 -  Y 1 1 2  *" Z I K 
3 ( - ) 8 ~ R  112 • Y t Z 11.~ - I( 

T ( P R O P )  

( O.  O. OI 
( O• O, 1¢21 
( l ,  1 / 2 .  11 
I 1 / Z ,  O,  O) 
( O, O• O) 
( O+ O. O) 
( O• O• I )  
( O+ Oo O) 
( O• O, O) 
( - 1 / 3 ,  1 / 3 +  1131  
I 1 / 3 .  1 / 3 .  - 1 ¢ 3 1  
( 1 / 3 +  - 1 / 3 .  1 / ] 1  
( O,  O• O! 
l I / Z +  O. Ol 
( O+ O+ 1¢Z1 
I O+ 1 / Z +  OI 
( O+ O+ O) 
( O+ O, Ol 
( O, O. Ol 
l O, O+ O) 
I O+ O• O) 
( O. O. O) 
( O, O, Ol 
( O.  O• O) 

T ( 0 1  S P )  

( O• O• O) 
( 1 1 2 •  O. O) 
( O• O+ 1 1 2 1  
l O• 1 / 2 ,  O) 
( O+ O, O! 
( l l Z .  112  t O) 
( 1 / 2 •  O• 1121 
I Ot 1 / 2 •  1 / 2 1  
( O. O. O) 
( 1 / 3 .  1 / ~ •  1 1 6 1  
( I / 6 .  1 / 6 .  1 / 3 1  
( 1 / 6 •  1 1 ~ •  1 / 6 )  
( O• O• O) 
( O+ O. 1 / 2 1  
( O+ 1 / 2 .  OI  
( 1 / 2 .  O, O) 
( O,  O, Ol  
I 1 / 2 ,  1 1 2 ,  O) 
( 112+ O. 1 / 2 1  
( O• 1 1 2 •  1 / 2 1  
( O• O+ O) 
( O. 1 / 2 .  1 / 2 1  
( 1 / Z +  1 / Z .  Ol 
( 1 / 2 .  O+ 1 / 2 1  

L O C A T I O q  V E C T O R  

I 0 • I • O ) 
l I 1 4  . 0 • I t )  
( 0 • +Y•  1 1 4  ) 
¢ I K •  1 / 4  • | ) 
l I f .  I X •  +Xl  
( 1 / 3  - f .  1 / 6  * X •  - 1 / 8  - X )  
( 1 1 5  ~X•  - 1 1 6  - X •  1 1 3  - X !  
t - 1 / 6  - X .  1 1 3  - X •  I t S  * X l  
( * f .  , X •  I f )  
( 1 1 5  * ~ •  I I 6  - X •  - f l  
( 1 / 6  - [ e  - X .  116  * K )  
( - ~ .  1 1 6  I X •  L / b  - X )  
( 0 0 0 ) 

( , X .  t / k  . * Z )  
( I l k  . t Y o  * Z )  
l I X .  IX+ *Xk 
( - K .  1 1 +  IX+ I P 2  - K I  
¢ 1 1 2  IX+ 1 1 2  - X .  - K !  
( 1 / 2  - X .  - X .  112  I X )  
( IX+ I X .  * X l  
( I X .  - X +  1 / 2  - K I  
( - K .  1 4 2  - X .  *~1  
( 1 1 2  - X .  IX+ - f l  

for sorting the operations, and the space-group iden- 
tifier (PA3) and number were appended to the symbol 
(24), in the same card image, for output only. 

The first three characters in (24) denote the lattice 
type, crystal system and status of centrosymmetry. 
Each generator occupies a six-character field, follow- 
ing a separator ($), in which the first character is I 
or P according as the rotation is proper or improper, 
respectively, the second and third characters contain 
the code of the rotation matrix (as in Table 2, with 
superscripts converted to upper-case letters) and the 
last three characters give the components of the space- 
group translation, in units of ~. If sorting and /or  a 
test of the generators [with (13), (15) and (17) above] 
are needed, point-group codes and/or  the jkl triplets 
[see (17)] are appended to the symbol. 

The symbol in (24) is most easily decoded, and 
only a minimum number of conventions need be 
incorporated into the program, which thus readily 
admits alternative choices of the origin and modified 
space-group settings. The necessary conventions 
amount to Table 2 and translation vectors associated 
with lattice-type letters. A separate file with such 
symbols seems to be preferable to a list included in, 
say, a DATA block of the program since it can be 
independently tested for relations between the gen- 
erators, after any modifications or additions have 
been introduced. 

With regard to computing time, only a small frac- 
tion of it is spent on developing the space group from 
its symbol, the slowest item being comprehensive tests 
for closure and the presence of an inverse element to 
each given one. In particular, the inverse test was 
found to be rather sensitive. However, these tests can 
often be relaxed, e.g. when the space-group symbols 
have previously been examined for internal con- 
sistency. A derivation of the 230 space groups, in all 
their representations given in ITA83, with the aid of 
the slowest version of the program (tests for closure 
and inverse, and description of the symmetry 
operations included), required about 37 s computing 
time on a Cyber 170-855. The program thus appears 
to be a suitable tool for computerized 'space-group 
look up',  whether for an inspection of the results, or 
their transfer to subsequent calculations in numeric 
or symbolic format. 

The above computations were initially carried out 
with space-group symbols which were made compat- 
ible with Vol. I of International Tables for X-ray 
Crystallography (1952). While this paper was being 
written, the author has been given the opportunity to 
compare the old conventions with those on which the 
new In ternational Tables for Crystallography (ITA83) 
are based. It was therefore possible to establish a link 
between the input to the present program and the 
new source of space-group data. The comparison was 
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Table 4. A concise reference to the generators of all 
the 230 crystallographic space groups 

The first co lumn of  the table lists the short symbols of  the 32 crystal lographic 
point groups, in all the relevant orientations. The second-column entry, 
corresponding to a given point group, contains the serial numbers of the 
general equivalent positions (ITA83), which completely specify the gen- 
erators of all the space groups based on this point group. For further 
explanations and example, see text and table footnotes. 

Short Short 
symbol Generator(s) symbol Generator(s) 

Triclinic 312 (hP) (2), (6) 
l (l) 321 (hP) (2), (5) 

(2) 32 (hRr) (2), (4) 
32 (hRh) (2), (5) 

Monoclinic 31 m (hP) (2), (6) 
2 (2) 3ml(hP) (2),(5) 
m (2) 3m (hRr) (2), (4) 

3m (hRh) (2), (5) 
2/m (3), (2) 31 m(hP) (8). (6) 

Orthorhombic 3m I (hP) (8), (5) 
3m (hRr) (8), (4) 

222 (2),(4) 3m (hRh) (8),(5) 
ram2 (2), (4) 
mmm (5). (2), (4) 

Hexagonal 
Tetragonal 6 (6) 

4 (3) 6 (6) 
~, (3) 6/m (7), (6) 
4/m (5), (3) 622 (6), (8) 
422 (3), (b) 6mm (6), (8) 
4ram (3), (6) 62m (6), (8) 
~,2m (3), (6) 6m2 (6), (I 2) 
~,m2 (3), (7) 6/mmm (13), (6), (8) 
4/mmm (9), (3), (6) 

Cubic 
Trigonal* 

23 (5), (2), (4) 
3 (hP) (2) m3 (17), (2), (4) 
3 (hRr, hRh) (2) 432 (5), (16), (13) 

(hP) (5) ~,3ra (5), (15), (14), 
(hRr, hRh) (5) m3m (29),(16),(13) 

* Remarks on the trigonal space groups. 
(a) The symbols "hP" and "hR" denote the hexagonal and rhombohedral Bravais 

lattices, respectively. 
(b) The symbols "hRr" and "hRh', following the short point-group symbol, indicate 

that the generators listed correspond to the ITA83 representation of the relevant space 
groups in rhombohedral and hexagonal axes, respectively. 

(c) Conventional point-group symbols are sometimes modified to suggest the orienta- 
tions of the pertinent space groups. For example, point group 32, when given as 312, 
indicates that it leads to the space group P312 etc. 

greatly facilitated by the facts that (i) ITA83 lists the 
space-group operations, based on a given point group, 
in the same order of their rotation parts (see above), 
and (ii) the equivalent positions and the correspond- 
ing symmetry operations, in ITA83, are numbered. 
Hence, the generators defined by Tables 1 and 2 and 
by (10) can now be represented as serial numbers of 
the general equivalent positions appearing in the 
above reference. Such a definition of the 230 crystallo- 
graphic space groups, in the context of the present 
algorithm, is provided by Table 4 which lists the point 
groups and the serial numbers of the general 
equivalent positions (in ITA83) that correspond to 
the generators in Table 1. 

For example, let us construct the space-group sym- 
bols [cf. (24)] for the space groups Pm3n (No. 223) 
and Pn3m (No. 224, origin at centre). These space 
groups are based on the point group m3m, and the 
serial numbers of the generators, (29), (16) and (13) 
in Table 4, correspond to (g, ~, )7), (.9 + 1/2, x + 1/2, 
z +1/2)  and (y + 1/2, x +1/2,  ~+1/2)  for Pm3n and 

to (~?, .~, `9~ (9, x + 1/2, z + 1/2) and (y + 1/2, x + 1/2, 
~) for Pn3m, respectively. The required symbols are 
readily constructed, using Tables 1 and 2 and con- 
sidering the structure of the space-group symbol 
described above [el (24)]. 

We thus obtain 

PCC$I3Q0005P4C6665P2D666 for Pm3n 
(25) 

and 

PCC$I3Q0005P4C0665P2D660 for Pn3m. 
(26) 

The origins of these two space groups are the same 
in the new and old editions of International Tables 
for X-ray Crystallography. However, the use of the 
new source of space-group data is much easier, owing 
to the consistent point-group like arrangement. 

Table 4 leads to all the representations of the space 
groups that are given in ITA83. 
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fessor A J. C. Wilson for his interest in this work and 
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publication. I am also grateful to the referees of this 
paper for their suggestions and comments, and for a 
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Abstract 
Hexagonal space groups, i.e. those with an hP lattice, 
are classified from the geometric-unit viewpoint by 
considering hexagonal crystal structures as combina- 
tions and permutations of some basic hexagonal 
prisms. Geometric units are the Dirichlet domains of 
the Wyckoff positions with the highest point-group 
symmetry in the space group. In this classification, 
there are six types of hexagonal space groups. Type 
hl consists of two independent geometric units of 
the same symmetry per crystallographic cell; in type 
h2, the two units are identical, but differently orien- 
ted. Type h3 has six independent geometric units, 
again of the same point-group symmetry, but the six 
units can be made up of three pairs, each consisting 
of two identical units, thus giving rise to type h4. 
There are subclasses in types hl and h3. Centers of 
geometric units in h l ( a )  and h3(a) are uniquely 
defined by intersections of point-group symmetry ele- 
ments, whereas those in hi(b)  and h3(b) are not 
because the space groups in these subtypes are hemi- 
morphic. Therefore, the two units along the polar axis 
may be combined as one. Type h5 consists of three 
units, each turned 120 ° from its neighbors owing to 
the screw axis 31, 32, 62 and 64. Similarly, type h6 has 
six units due to screw axes 61 and 65, and adjacent 
units are 60 ° apart. Rhombohedral space groups show 
two types of patterns: type rl has two independent, 
and type r2 two identical, units. The h.c.p, and related 
structures are used to demonstrate the application of 
geometric units to crystal-structure descriptions. 

Introduction 
A recurring problem in finding a model for the sol- 
ution of a crystal structure and its interpretation is 

0108-7673/84/050567-05501.50 

to identify some convenient units that, by easy sym- 
metry operations, will enable the construction of the 
entire structure. In this respect, asymmetric units, 
topological units (Wells, 1977), crystal chemical units, 
symmetry-related units (Kennard, Speakman & 
Donnay, 1967), building units (Lima-de-Faria & 
Figueiredo, 1976) and crystallographic cells have 
been used. For cubic crystal structures, Chieh (1979) 
suggested geometric units based on the construction 
of polyhedra, a proposal which differs from the pre- 
vious ones in that it deals mainly with the symmetrical 
distribution of the atoms in the structure, rather than 
their connectivity or framework. The classification 
and description of cubic space groups in terms of 
geometric units were later given by Chieh, Burzlaff 
& Zimmermann (1982). The concept of geometric 
units was extended to tetragonal space groups by 
Chieh (1983), and some advantages were pointed out. 

Applications of geometric units to cubic crystal 
structures have been given in previous publications 
(Chieh, 1980, 1982, 1983). Their application to the 
solution of a crystal structure and its subsequent 
interpretation was exemplified by the paper on anhy- 
drous zinc bromide (Chieh & White, 1984). The pres- 
ent paper deals with the hexagonal and rhombohedral 
space groups. 

Early work on the classification of cubic space 
groups by geometric units was somewhat intuitive. 
As more work on the theoretical aspects of space 
groups developed (see Gubler, 1982; Fischer & Koch, 
1983; Burzlatt & Zimmermann, 1980) it became 
apparent that the classification follows the results of 
Euclidean normalizers of space groups. The purpose 
of geometric units is to divide a crystal structure into 
polyhedral units that have the same shape, volume 
and point-group symmetry. 
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